{}
See how a CS professor is using our compiler for class assignment.
Try Programiz PRO for Educators!
Learn DSA with step-by-step code visualization.
Try Programiz PRO for Educators!
run-icon
main.py
# Online Python compiler (interpreter) to run Python online. # Write Python 3 code in this online editor and run it. import numpy as np import sys print("โœ… 1. Vectorized Operations") arr = np.array([1, 2, 3, 4]) print("Original:", arr) print("Add 5:", arr + 5) print("Multiply by 2:", arr * 2) print("Square root:", np.sqrt(arr)) print("\nโ›” 2. Fixed Size of NumPy Arrays") arr = np.array([1, 2, 3]) print("Original:", arr) # arr.append(4) # This would raise an error arr = np.append(arr, 4) print("After append (via np.append):", arr) print("\n๐Ÿ“š 3. Uniform Dtype") arr = np.array([1, 2, 3.5]) print("Array with int and float:", arr) print("Dtype:", arr.dtype) arr = np.array([1, "two", 3]) print("Array with mixed types:", arr) print("Dtype:", arr.dtype) print("\n๐Ÿ“ 4. Memory Comparison: List vs NumPy Array") list_2d = [[1, 2], [3, 4], [5, 6]] arr_2d = np.array(list_2d) list_size = sum(sys.getsizeof(row) for row in list_2d) numpy_size = arr_2d.nbytes print("List of lists size:", list_size) print("NumPy array size:", numpy_size) print("\n๐ŸŽฏ 5. Boolean Indexing") arr = np.array([10, 20, 30, 40, 50]) condition = arr > 25 print("Original array:", arr) print("Condition (arr > 25):", condition) print("Filtered result:", arr[condition]) print("\n๐Ÿงช 6. Exercises") # a) Create NumPy array from 1 to 10 and multiply by 3 nums = np.arange(1, 11) print("Numbers 1โ€“10:", nums) print("Multiplied by 3:", nums * 3) # b) Create 2D array and apply boolean indexing matrix = np.array([[5, 15, 25], [10, 20, 30]]) print("2D Array:\n", matrix) print("Elements > 15:", matrix[matrix > 15]) # c) Mix int and float and check dtype mixed_arr = np.array([2, 7.1, 5]) print("Mixed array:", mixed_arr) print("Dtype:", mixed_arr.dtype) # d) Compare memory for a large list vs array large_list = list(range(1000)) large_array = np.array(large_list) print("Memory used by list:", sys.getsizeof(large_list) + sum(sys.getsizeof(x) for x in large_list)) print("Memory used by array:", large_array.nbytes) # e) Append to NumPy array using np.append() arr = np.array([1, 2, 3]) arr = np.append(arr, [4, 5]) print("Appended array:", arr)
Output