The from_dict()
function in Pandas is used to convert a dictionary into a Pandas DataFrame.
Example
import pandas as pd
# sample dictionary
data_dict = {'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]}
# convert dictionary to DataFrame
df = pd.DataFrame.from_dict(data_dict)
print(df)
'''
Output
A B C
0 1 4 7
1 2 5 8
2 3 6 9
'''
from_dict() Syntax
The syntax of the from_dict()
method in Pandas is:
pd.DataFrame.from_dict(data, orient='columns', dtype=None, columns=None)
from_dict() Arguments
The from_dict()
method in Pandas has the following arguments:
data
: the dictionary to convertorient
(optional): the type of orientation to use for the datadtype
(optional): data type to force for all columnscolumns
(optional): specifies the columns explicitly, if the keys of the passed dictionary should not be sorted
from_dict() Return Value
The from_dict()
function returns a DataFrame object created from the input dictionary.
Example 1: Default Orientation
import pandas as pd
data_dict = {'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
# default orientation: 'columns'
df_default_orient = pd.DataFrame.from_dict(data_dict)
print(df_default_orient)
Output
one two a 1.0 1 b 2.0 2 c 3.0 3 d NaN 4
In this example, we used the default 'columns'
orientation so that the indexes of the Series align with the index of the DataFrame, and the labels of the Series become the columns of the DataFrame.
Example 2: Specified Orientation
import pandas as pd
data_dict = {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}
# Orient the DataFrame with index orientation
df_index_orient = pd.DataFrame.from_dict(data_dict, orient='index')
print(df_index_orient)
Output
0 1 2 a 1 2 3 b 4 5 6 c 7 8 9
In this case, we used the 'index'
orientation.So, the keys of the dictionary become the index of the DataFrame, and the list-like values become the rows.
Example 3: Specifying Columns Order
import pandas as pd
data_dict = {'one': [1, 2, 3], 'two': [4, 5, 6], 'three': [7, 8, 9]}
# create a DataFrame with specified columns order
df_specified_columns = pd.DataFrame.from_dict(data_dict, orient='index', columns=['three', 'two', 'one'])
print(df_specified_columns)
Output
two three one one 1 2 3 two 4 5 6 three 7 8 9
In this example, we explicitly defined the column order in the resulting DataFrame.
Note: We cannot use columns
parameter with orient='columns'
.