Pandas mask()

The mask() method in Pandas is used to replace values where certain conditions are met.

Example

import pandas as pd

# create a DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
})

# replace values in column 'A' that are greater than 2 with -1 df['A'] = df['A'].mask(df['A'] > 2, -1)
print(df) ''' Output A B 0 1 5 1 2 6 2 -1 7 3 -1 8 '''

mask() Syntax

The syntax of the mask() method in Pandas is:

df.mask(cond, other=nan, inplace=False, axis=None, level=None)

mask() Arguments

The mask() method takes following arguments:

  • cond - condition to check
  • other (optional) - values to replace with where the condition is True
  • inplace (optional) - modifies the caller object directly without creating a new object
  • axis (optional) - which axis to align the other values with, if necessary
  • level (optional) - if the DataFrame has a MultiIndex, this determines which level to align with

mask() Return Value

The mask() method returns a new DataFrame with the same shape as the original, where values specified by the condition are replaced.


Example 1: Replace Values Using mask()

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
})

# use mask() to replace even values # across the entire DataFrame with 0 df = df.mask(df % 2 == 0, 0)
print(df)

Output

   A  B
0  1  5
1  0  0
2  3  7
3  0  0

In the above example, the mask() method replaces all the even numbers with 0.


Example 2: Customizing Value Replacement With other Argument in mask()

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8]
})

# replace values in 'A' greater than 2 with their double df['A'] = df['A'].mask(df['A'] > 2, other=lambda x: x * 2)
print(df)

Output

   A  B
0  1  5
1  2  6
2  6  7
3  8  8

In this example, we have applied the mask() method to the A column of the df DataFrame.

It first checks for values in A that are greater than 2 using df['A'] > 2. For those values that meet this condition, it replaces them with their double.

The doubling is achieved using the other argument, which is set to a lambda function lambda x: x * 2. The lambda function takes each value in the A column and doubles it.


Example 3: Aligning Conditions With axis Argument in mask()

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': [9, 10, 11, 12]
})

condition_series = pd.Series([True, False, True, False])

# using mask with a Series condition and axis=0 df.mask(condition_series, -1, axis=0, inplace=True)
print(df)

Output

   A  B   C
0 -1 -1  -1
1  2  6  10
2 -1 -1  -1
3  4  8  12

Here, mask() is applied across rows using the axis=0 argument.

For each row, if the corresponding value in the condition_series is True, all values in that row in the df DataFrame are replaced with -1.

Here, with inplace=True, the original DataFrame df is modified directly, and there's no need to assign the result to a new variable.


Example 4: Applying Conditional Replacements in MultiIndex DataFrame Using mask()

import pandas as pd

# create a MultiIndex DataFrame
arrays = [
    ['A', 'A', 'B', 'B'],
    [1, 2, 1, 2]
]
index = pd.MultiIndex.from_arrays(arrays, names=['letters', 'numbers'])
df = pd.DataFrame({'data': [10, 20, 30, 40]}, index=index)

print("Original DataFrame:")
print(df)
print()

# apply mask to replace values in 'data' column # where the 'numbers' level is 1 with 99 df['data'] = df['data'].mask(df.index.get_level_values('numbers') == 1, 99, level='numbers')
print("DataFrame after mask:") print(df)

Output

Original DataFrame:
                      data
letters  numbers      
A           1          10
            2          20
B           1          30
            2          40

DataFrame after mask:
                  data
letters numbers      
A       1          99
        2          20
B       1          99
        2          40

In this example, we used the MultiIndex Dataframe df and used the mask() method with the level argument to replace the values in the data column where the numbers level is 1 with 99.

Our premium learning platform, created with over a decade of experience and thousands of feedbacks.

Learn and improve your coding skills like never before.

Try Programiz PRO
  • Interactive Courses
  • Certificates
  • AI Help
  • 2000+ Challenges