 # JavaScript Math.fround()

The `Math.fround()` method returns the nearest 32-bit single precision float representation of a number.

### Example

``````// calculate the nearest 32-bit single
// precision float representation of 5.05
var num = Math.fround(5.05);

console.log(num);

// Output: 5.050000190734863``````

## fround() Syntax

The syntax of the `fround()` method is:

``Math.fround(doubleFloat)``

Here, `fround()` is a static method. Hence, we need to access the method using the class name, `Math`.

## fround() Parameters

The `fround()` method takes in:

• doubleFloat - a number.

## fround() Return Value

The `fround()` method returns:

• the nearest 32-bit single precision float representation of the given number.
• `NaN` for non-numeric arguments.

## Example 1: JavaScript Math.fround()

``````// find the  nearest 32-bit single precision float representation of 1.5
var num1 = Math.fround(1.5);

console.log(num1);

// find the  nearest 32-bit single precision float representation of 1.337
var num2 = Math.fround(1.337);

console.log(num2); ``````

Output

```1.5
1.3370000123977661```

In the above example,

• `Math.fround(1.5)` computes the nearest 32-bit single precision float representation of 1.5
• `Math.fround(1.337)` computes the nearest 32-bit single precision float representation of 1.337

Note: JavaScript uses 64-bit double floating-point numbers internally.

In the example above, we can see that the numbers that can be represented perfectly in the binary numeral system (like 1.5) have the same 32-bit single precision float representation.

However, some that can't be represented perfectly (like 1.337 or 5.05) differ in 32-bit and 64-bit.

## Example 2: fround() With Large Numbers

``````// find the nearest 32-bit single precision float representation of 2 ** 130
var num = Math.fround(2 ** 130);

console.log(num);

// Output: Infinity``````

In the above example, we have used `Math.fround()` to compute the nearest 32-bit single precision float representation for an extremely large number: `2 ** 130` which is 1.361129467683754e+39.

The output indicates that the result is `Infinity` for extremely large numbers.